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Circular Aperture Pattern Synthesis From Collapsed
Equivalent Line-Source Distributions

Adriaan (Riaan) J. Booysen, Member, IEEE

Abstract—A novel circular aperture pattern synthesis technique
is presented, which enables a linear line-source distribution to be
converted to a rotationally symmetric circular aperture distribu-
tion, of which any ¢-cut radiation pattern is ideally the same as
the principal plane pattern of the line-source distribution. Line-
source pattern synthesis techniques are numerous and versatile
and the technique presented here allows these techniques to be
applied to circular apertures as well. This new synthesis method
is most compatible with line-source distributions which have zero
edge illumination.

Index Terms—Antenna radiation patterns, aperture antennas.

I. INTRODUCTION

HIS PAPER presents a technique which allows symmetric

line-source distributions to be converted to equivalent ro-
tationally symmetric circular aperture distributions. The term
‘equivalent’ is used to indicate that the circular aperture dis-
tribution will ideally yield a rotationally symmetric radiation
pattern identical to the principal plane radiation pattern of the
line-source distribution. There are numerous techniques avail-
able for line-source pattern synthesis (e.g., [1]-[3]) and circular
aperture pattern synthesis (e.g., [4]-[13]). Most of the earlier cir-
cular aperture synthesis techniques were limited to Taylor-type
distributions for patterns with low sidelobes. The generalized
circular aperture synthesis method later presented by Elliott and
Stern [10] allows patterns of arbitrary shape and sidelobe levels
to be synthesized. The synthesis method presented here offers an
alternative method for the synthesis of circular aperture antenna
patterns. The value of the new synthesis method lies not only
in the simple conversion of existing line-source distributions to
equivalent rotationally symmetric radial distributions, but it also
reveals some important characteristics of circular aperture dis-
tributions. A novel application of Elliott and Stern’s synthesis
method for circular apertures is also introduced. It will be shown
that their method can be used to synthesize linear distributions
with the additional constraint of zero edge illumination, for pat-
terns of arbitrary shape and sidelobe envelope.

The technique described in this paper is based on the col-
lapsing of the circular aperture distribution to an equivalent
line-source distribution. For circular aperture pattern synthesis
the process is reversed and a numerical procedure is adopted to
calculate the radial distribution which will yield a rotationally
symmetric pattern which will ideally be identical to the prin-
cipal plane pattern of the associated line-source distribution.
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The method of collapsing an arbitrary aperture distribution
to an equivalent line-source distribution is a known technique
(see, for example, [14]) and will be discussed only briefly. It
should become evident that any planar aperture with an arbi-
trary aperture distribution and boundary has a collapsed equiva-
lent line-source (CELS) distribution in any plane perpendicular
to the aperture. In the synthesis method adopted here for cir-
cular apertures, a known line-source distribution is regarded as
the CELS distribution of the circular aperture. The rotationally
symmetric radial distribution is then approximated by either a
Fourier or a Taylor series expansion, or a combination of both.
The unknown Fourier/Taylor coefficients are then solved for by
means of matrix inversion. Several examples will be presented
to verify the accuracy of the synthesis method.

II. COLLAPSING OF APERTURE DISTRIBUTIONS

To visualize the process of collapsing the aperture distribu-
tion to an equivalent line-source distribution, it is perhaps best
to consider the way in which the radiation pattern of a planar an-
tenna array is calculated. For the rectangular array of M’ x N’
elements (M’ = 2M + 1, N’ = 2N + 1) with arbitrary exci-
tation I,,,,, shown in Fig. 1, the radiated field strength at angle
¢, 0 is given by (see, for example, [15])

M N
P(H(/)) — Z Z Imnejk sin 6(md, cos p+nd, sind)). (1)

m=—M n=—N

For the sake of an example, let us consider the plane defined
by ¢ = 0° (any other value of ¢ will also suffice, provided
that the excitation values are collapsed perpendicularly to the
z¢-plane). Recognising that the exponential term is the same
for every column (all terms having the same m), (1) can be re-
arranged as

M
P(8,0) = Z A e?F i B (mde) @)
m=—M
where
N
A = Z T 3)
n=—N

Equation (2) presents the radiation pattern of a linear array of
M’ = 2M + 1 elements, with the excitation of each element
given by the sum of all N’ = 2N + 1 element excitations in that
column (M = 3 and N = 2 in Fig. 1). It should be evident that
it is much quicker to calculate the radiation pattern of the CELS
distribution than the radiation pattern of the complete array, as
the time required to calculate the exponential terms in (1) and (2)

0018-926X/04$20.00 © 2004 IEEE



BOOYSEN: CIRCULAR APERTURE PATTERN SYNTHESIS FROM CELS DISTRIBUTIONS

P(rne.d)

X

Fig. 1. Coordinate system for planar array comprised of isotropic radiators.

is significantly longer than the time required to add up a series of
complex numbers. It must however be emphasized that the plane
of cut must be perpendicular to the aperture of the antenna. The
distribution is then collapsed straight down onto this plane. If the
collapsing cannot be done along columns where the exponential
terms are constant, not much advantage is to be gained in terms
of time saving. In the design phase of a planar antenna array
one is however at first usually only interested in the principal
plane patterns and a significant time saving can be achieved by
performing the collapsing of the columns. Other examples of
where there should also be a time saving by collapsing of the
aperture include the pattern calculation of cylindrical scanners
(reducing the cylindrical surface integral to a single cylindrical
contour integral) and during the design phase of symmetric re-
flector antennas, where the pattern calculation time can approx-
imately be halved (every point in the lower half of the reflector
has a symmetric point in the upper half for an azimuth plane
cut).

For a circular aperture and in fact any aperture with a con-
tinuous distribution, the discrete summation process of an array
becomes a continuous line integral. The CELS distribution g ()
of a circular aperture can be calculated by means of the integral

I(r)dy “)

Q
—~
)
SN—
I

where r = /22 +y? and —R < z < R. Equation (4) is the
integral form of (3). When () is rotationally symmetric, (4)
becomes

I(r)dy. (5)
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It should be evident that for I () finite, g(R) is always zero. This
is an important observation because it puts a limitation on the
line-source distributions which can be transformed to equiva-
lent circular aperture distributions, ideally with negligible error.
Many line-source distributions do not have zero edge illumina-
tion, whilst all circular aperture CELS distributions do.

For a constant aperture illumination I(r) = 1, (5) above re-
duces to

g(z) = 2/ R? — z2. (6)

The radiation pattern for this CELS distribution (the factor 2
having been omitted) is given by

R
P(#) = / VR2 = g2eiBesing gy @
-R

where 5 = 27 /A. Equation (7) can be shown to reduce to

_ 2J1(BRsin)

Pror(60) = BRsinf ®)

in normalized form (see the Appendix). This is the well-known
expression for the radiation pattern of a circular aperture with
constant illumination (e.g., [16]).

III. SYNTHESIS METHOD

It was shown above that a circular aperture can be represented
by a collapsed equivalent line-source distribution. The question
which now arises is whether the process can be reversed, or in
other words, can one determine a rotationally symmetric aper-
ture distribution I(r) from a given line-source distribution? A
method for doing so is to express I(r) as a Fourier or Taylor
series, or even a combination of both. The coefficients are then
solved for by means of matrix inversion. Taking into account the
typical distribution of I(r), a suitable Fourier series expansion
for I(r) is given by

N N
nwr . nar
I(T):ao—i—;ancosﬁ—}—;bnsmﬁ ©)
where R is the radius of the circular aperture and N is an arbi-
trary number. Substituting (9) into (5) and evaluating the result

at M = 2N + 1 points, one obtains M equations with M un-
knowns, namely

9(@m)
N
ZGOVR2_xm2+Zan
n=1

al Vi nwr(Tm, y)

V R?2—xm,?

N (Tom, y)

Zmd) g
/ cos oR Y
0

(10)

where 0 < z,, g(z) is the known line-source distribution

<R,
and m 1 — M. The factor 2 in (5) was dropped, as it is
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a constant which will only influence the absolute values of the
coefficients.

Equation (10) can be written in linear system matrix notation
as

where the excitation matrix is
[Crm] = [9(xm)] (12)
the matrix of unknown expansion coefficients is
_ p_1, n=1—>N+1
[Bal = bn-N—1, n=N+2—-2N+1 (13)

and the coefficient matrix is given by (14), shown at the bottom
of the page. In this paper, the matrix inversion to obtain B,
was done with the conjugate gradient method (CGM) [17], [18].
Once the coefficients in (13) have been determined, the rotation-
ally symmetric radial distribution can be calculated from (9).

Instead of the Fourier series expansion, one can also use a
Taylor series expansion to calculate I(r), namely

2N

I(r)=ap+ Z ant™. (15)
n=1

In (15), the upper limit of the summation term was chosen as 2N
for calculation purposes, to coincide with the Fourier expansion
given by (9). The matrices for determining the coefficients are
set up in similar fashion as the Fourier series approach. The
coefficient matrix elements are given by

vV R2—z,,2

[

Typical radial distributions will have a peak at the centre of the
aperture and will then roll off toward the boundary, such as a
cosine type of distribution. For such problems the cosine terms

r(Lm,

n—1

(16)
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of (9) or the Taylor series of (15) will suffice. When the distri-
bution magnitude near the boundary of the aperture rises again,
as is typically the case for Taylor and Chebychev-type linear
distributions, the sine terms of (9) become essential. One could
combine all the terms of (9) and (15) to accommodate all possi-
bilities, but the combination which was found to yield the most
accurate results in general was

K N
I(r)= a0+ anr™ + Y bysin 7;—7;; (17)
n=1 n=1

where K and N are not necessarily equal and the total number
of unknowns is M = K + N + 1. The corresponding coefficient
matrix is given by (18), shown at the bottom of the page.

IV. EXAMPLES

In order to check the accuracy of the synthesis method, a
number of known rotationally symmetric radial distributions
will be collapsed to equivalent line-source distributions which
are a function of  only. These CELS distributions will then be
used as the known ¢(z) function and it will be tested whether
the synthesis procedure will yield the same radial distribution
as the original.

The simplest radial distribution to consider is a constant aper-
ture illumination. The CELS distribution for a constant radial
distribution is given by (6). This distribution was used as g(x)
and the number of unknowns M for all three expansions given
by (9), (15), and (17) was selected to be 11. Table I presents the
coefficients for all three expansions and Fig. 2 shows the nor-
malized magnitude of the synthesized radial distributions on an
expanded scale. All three expansions essentially yield the same
result. It is worth noting that the coefficients of the Fourier se-
ries do not tend to zero very rapidly, and that the Fourier series
by itself is the least accurate.

The next example tests the synthesis method for a linear radial
distribution given by I(r) 1 — r/R, also calculated with
M = 11. The corresponding CELS distribution is shown in
Fig. 3 (only the positive z-axis is shown) and the coefficients
for the three expansions are given in Table I. Fig. 3 also shows

/R2_mm’2
/

0

cos 7("_1);;(“ Dy, n=1->N+1

| sin —("_N_IQ);{T('T"’ B gy, n=N+2—2N+1
0
\% R?—zp? n—1
J [—T(Ig’y)} dy, n=1—-K+1

J

0

2R

sin (n—K—-1)rr(zm,y) d

y, n=K+2—->K+N+1
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TABLE 1
SERIES COEFFICIENTS FOR CONSTANT AND LINEAR RADIAL DISTRIBUTIONS
Constant illumination I(r)=1 Linear illumination /(r)=1-r/R
n | Fourier | Taylor | Comb’d | n | Fourier Taylor | Comb’d
1| +0.54 | +1.00 +1.00 1 +0.67 +1.99 +2.00
2| +0.30 | +0.02 +0.00 2 +0.70 -1.93 -0.43
31 -0.01 -0.03 -0.01 3 +0.61 -0.23 -0.34
41 +0.06 -0.01 +0.00 4 +0.19 +0.19 -0.24
51 +0.14 | +0.01 +0.00 5 -0.10 +0.11 -0.16
6| -0.04 +0.02 +0.00 6 -0.07 -0.03 -0.09
71 +0.31 +0.01 +0.00 7 -0.09 -0.10 -0.02
8| +0.17 | +0.01 +0.00 8 -0.02 -0.10 -0.54
91 -0.05 +0.00 +0.00 9 -0.04 -0.05 -0.40
10 [ +0.02 -0.01 +0.00 10 -0.35 +0.03 +0.17
11| -0.07 -0.02 +0.00 11 +0.01 +0.11 -0.04
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Fig. 2. Synthesized radial distributions for a uniformly illuminated circular
aperture.

the synthesized radial distributions compared to the ideal linear
radial distribution. The agreement between all three expansions
is very good.

Fig. 4 shows the distribution function given by Ludwig [9]
for a circular aperture with a sidelobe level of 40 dB, as well
as the CELS distribution (Curve B). For this example there is a
sharp rise in the illumination level toward the aperture boundary,
so one might expect the series expansion with the sine terms to
yield better accuracy than the Taylor expansion. This was indeed
the case and the synthesized radial distributions can also be seen
in Fig. 4 (M = 201, K = 135 for the combined approach). The
Fourier expansion on its own is accurate over the entire range
of z, except for the region where r is very small. The reason for
this is that the arguments of the cosine and sine terms in (9) are
very small, so that I(r) is essentially given by the sum of the
cosine coefficients. At » = 0 the cosine coefficients have to add
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Fig. 3. Synthesized radial solutions for a linear radial taper.

1.0 T T T T T T T T

0.8 ]
o
o
2 0.6 1
c
@
s 0.4 ]
o
o
5 0.2
E
< 0.0 A
z B —e—

-0.2 C—e

D—=—
-0.4 + t + + + t + + + + 0
0.0 0.2 0.4 0.6 0.8 1 .
Distance from centre to boundary 0.7

A Original/Radial (Combined) B CELS distribution C Radial (Fourier) D Radial (Taylor)

Fig. 4. Ludwig’s CELS and synthesized radial distributions.

up to zero, which does not happen since the cosine coefficients
a,, do not rapidly tend to zero even for the larger values of n.
The Taylor expansion is more accurate at - = 0, but has a large
negative value at »r = R (value of —0.74). The distribution syn-
thesized by the combined Fourier/Taylor expansion is virtually
indistinguishable from the original distribution.

It should be noted that there seems to be no fixed rule for
selecting the value of K (smaller or greater than M/2). It is
best to experiment with the number of coefficients M as well
as the break point K. When the error term in the CGM routine
does not tend to zero, it means that more than one solution may
be possible. This can usually be seen as a sharp drop or increase
atr = 0orr = R.

The preceding examples were presented to show that the
method yields the correct radial distribution for collapsed
known radial distributions. Proper synthesis from known
line-source distributions will next be attempted. The first of
these examples is the well-known cosine and cosine-squared
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Fig. 6. Sin(z)/z
distributions.

line-source distribution  with

synthesized radial

line-source distributions. Fig. 5 shows these distributions along
with the corresponding radial distributions for a circular aper-
ture (combined expansion, M = 51, K = 35). The accuracy
of the synthesized radial distributions can easily be verified by
calculation of the patterns of the circular apertures. The side-
lobe levels of the synthesized radial distributions match those
of the linear distributions summarized in ([16], Table 4-2). The
sidelobe levels of the cosine and cosine-squared line-source
distributions are —23.0 dB and —31.7 dB, respectively.

The second example is that of the sin(z)/x distribution
shown in Fig. 6, which yields the pattern shown in Fig. 7. The
associated radial distributions calculated by means of the three
expansions types are also given in Fig. 6, with M = 51 and
K = 35. Also shown in Fig. 7 is the radiation pattern that
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Fig. 8. Elliott’s line-source distribution example, with synthesized radial
distributions.

would be obtained using the linear sin(z)/z distribution di-
rectly as the radial distribution. This is clearly a very inaccurate
procedure to adopt.

The above example distributions are easily synthesized as the
line-source illumination tends to zero at the edges. When the
line-source distribution is not zero at the boundary, an exact
solution cannot be obtained. The linear distribution in Fig. 8
(Curve A) was calculated by means of Elliott’s perturbation
technique [2] for a pattern with the height of the first sidelobe
chosen to be —35 dB, the height of the next four —25 dB and the
characteristic Taylor roll-off for the remainder of the sidelobes.
This distribution cannot be regarded as a true CELS distribution
of a circular aperture, as the edge illumination does not tend
to zero. We will nevertheless attempt to synthesize an equiva-
lent radial distribution which will yield a CELS distribution as
shown in Fig. 8.
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Fig. 9. Reduction of edge illumination by means of power spreading.

The three expansions, respectively, yield the radial distribu-
tions shown in Fig. 8 (M = 201 in all cases, K = 135 in com-
bined formulation). The high value at » = R is to be expected,
as the CGM procedure will attempt to force a large nonzero il-
lumination value where the integral forces it to be zero. When
the radial distributions of Fig. 8 are collapsed to see how closely
they represent the original line-source distribution, one obtains
in all three cases CELS distributions which are a perfect match
for the original. This implies that when the CGM routine does
not convert to an exact solution (the error term does not tend to
zero), the solution it converges to may not be unique.

In an attempt to obtain a more practical radial distribution for
Elliott’s distribution, the original distribution given in Fig. 8 is
modified by a cosine weighting curve (a linear weighting func-
tion can also be used). The distribution is extended by AR, as
shown in Fig. 9. The approach adopted here is based on the con-
servation of power, so that the total radiated power will in the
end be the same as in the original case. The unmodified region
(Region I) is defined as 0 < z < R — AR, and the new dis-
tribution ¢'(z) is equal to the original line-source distribution,
namely

g'(x) = g(x)

In the region R — AR < z < R (Region II) we define a
weighting function

W(z) = /(1 +cost)/2

(19)

(20
where

m z—(R—AR)

t_§'R—m—Am'

2D
Forz = R— AR, W = 1. Atz = R wehave W = /1/2, so
that W2 = 0.5. In the region R — AR < x < R we now define
the new distribution ¢'(z) as

g'(x) = g(z)W (x).

The power at the edge is thus reduced by a factor 2.

In the third region R < £ < R+ AR the original distribution
is zero. We now fill the distribution in this region up with the
power we have taken away from the region R — AR < z < R,
and we do so symmetrically around z R. Defining A’
x — R, we have in the third region

A=g(R-A")
B=AW(R-A')

VAZ B2,

(22)

g'(z) (23)
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Fig. 10. Elliott’s linear distribution modified with AR
equivalent radial distribution.

0.05R, and

Fig. 10 shows the Elliott synthesis example’s original linear dis-
tribution (Curve A) and the same distribution modified by a 5%
power conservation window AR = 0.05R (Curve B). Fig. 11
shows the corresponding radiation patterns of the original distri-
bution (Curve A, R = 5)\) and the modified distribution (Curve
B, R = 5.18), adjusted to yield the same beamwidth as the
original distribution). The modified distribution yields a pat-
tern similar to the original pattern, with moderately distorted
sidelobe levels. The first sidelobe is at —37.2 dB and the next
three are slightly above —25 dB. By over-designing the original
linear distribution, one can compensate for the distorted side-
lobes to an extent. A “corrected” linear design for a first sidelobe
at —33.2 dB and the following four at —25.4, —25.4, —25.2, and
—25.0, respectively, converted by 5% power spreading, yields
a pattern virtually indistinguishable from the original pattern
(Fig. 11, Curve A), except for the far-out sidelobes which roll
off at the same rate as Curve B.

With the modified distribution (Fig. 10, Curve B) next used as
the CELS input for the new circular aperture synthesis method,
one obtains the radial distribution calculated with the combined
Taylor/sine series approach (M = 201, K = 135) as shown in
Fig. 10, Curve C. This radial distribution is much more practical
than those shown in Fig. 8.
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Fig. 12. Radial and CELS distributions for Elliott and Stern’s circular aperture
example.

As mentioned before, Elliott and Stern’s method [10] is suit-
able for the design of circular aperture distributions with pat-
terns of arbitrary shape and sidelobes of arbitrary individual
height. The first example presented in ([10], Case 1) is for a
circular aperture with a pattern shape identical to the pattern of
the linear distribution discussed above (first sidelobe at —35 dB,
next four at —25 dB, Taylor roll-off further on). The radial dis-
tribution for this example ([10], Case 1) is shown in Fig. 12
(Curve A). This distribution is significantly easier to implement
than the radial distribution shown in Fig. 10 (Curve C) and must
be regarded as the better of the two solutions. When the radial
distribution of Fig. 12 (Curve A) is collapsed, the CELS distri-
bution given by Curve B in Fig. 12 is obtained. It can easily be
verified that for this CELS distribution, the new method (com-
bined expansion) yields exactly the same radial distribution as
Fig. 12, Curve A. An instructive observation is that the CELS
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distribution has zero edge illumination. Classic linear distribu-
tion synthesis, even by Elliott’s original method (Fig. 8, Curve
A), does not allow the restriction of zero edge illumination to
be imposed. Although the radial distribution for a given pattern
shape and sidelobe envelope does not necessarily have zero edge
illumination, the collapsed (linear) distribution always will. One
can therefore use the circular aperture synthesis method of El-
liott and Stern to synthesize linear distributions for arbitrarily
shaped symmetric patterns with the additional constraint of zero
edge illumination.

The radiation pattern of a circular aperture with the radial
distribution of Curve A in Fig. 12 is shown overlaid (Curve C)
with the linear distribution patterns in Fig. 11 (R = 5.13\ for
achieving the same beamwidth as the other patterns). The speci-
fied sidelobes of the circular aperture pattern are almost indistin-
guishable from the specified sidelobes of the linear distribution,
but the far-out sidelobes roll off at a faster rate than for the linear
distribution.

V. CONCLUSION

A technique was presented which allows the distribution
of a circular aperture antenna to be synthesized to have the
same rotationally symmetric radiation pattern as the principal
plane pattern of a known line-source distribution. A new de-
gree of freedom is thus introduced in the synthesis of circular
aperture antenna patterns. The line-source distribution must
be symmetrical with respect to the centre and should ideally
have zero edge illumination. Although no proof of the unique-
ness of the synthesized radial distributions was given, various
examples showed that the synthesis procedure produces the
correct rotationally symmetric radial distribution when the
CELS distribution has zero edge illumination. If the CELS
edge illumination is not zero, the solution may no longer be
unique and the three expansion functions used in the paper may
yield different radial distributions as a solution. These radial
distributions nevertheless yield the same CELS distribution
when the synthesized radial distribution is collapsed again to
see how well it approximates the target line-source distribution.
In practice one should experiment with the number of un-
knowns M, the approach (Fourier, Taylor or the combination),
the relative value of K and if necessary, the amount of power
spreading, to find the optimal solution.

Although power spreading is an option for line-source
distributions with nonzero edge illumination, it is in this case
probably better to use the generalized synthesis method for cir-
cular apertures as proposed by [10]. This generalized synthesis
method can be used to derive symmetric line-source distribu-
tions with the additional constraint of zero edge illumination,
for patterns of arbitrary shape and sidelobe envelopes.

APPENDIX

The radiation pattern of an isotropic line-source distribution
I(x) of length 2R is given by (e.g., [16])

R
P(9) = / I(2)ei "m0 g 24)
“R
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where § = 27 /) and 6 = 0° is the broadside direction of the
line-source. For a circular aperture with constant illumination
the CELS distribution is given by (6) and (24) becomes

(25)

R
P9 = / VR? — g2eiPrsing qg
R

Expressing the exponential term in (25) in cos 4 sin notation
and recognising that the integral of the sine term will be zero,
(25) can be written as

R
P(9) = / vV R? — 22 cos(fzsin ) dx
“Rr

R
= 2/ vV R? — 22 cos(Bzsinf) dx. (26)
0

Performing the substitution z = ¢ R in (26) results in
V1=t cos(BRtsinf) dt

P(0) =2R?

2R? [ /1 — t2cos(zt) dt 27)

S O~

where z = BRsin f. From [19] we have the relation

_ 209 [ s
Ju(z)_mo/(l—t) cos(zt)dt  (28)

where J,,(z) is a Bessel function of order v. For v = 1 we have
I'(3/2) = (1/2)y/m and (27) reduces to

J1(BRsin6)
Bsinf

This expression is identical in form to [16, (8—135)], where the
radiation pattern for a uniform circular aperture was derived
from first principles. Equation (29) can be normalized for a max-
imum of unity at # = 0°, which then becomes

P(0) = 27R (29)

_ 2J1(BRsin )
Pror(6) = BRsinf (30)
as was done in [16].
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